<<34567>>
26.

Let  $\hat{u}=u_{1}\hat{i}+u_{2}\hat{j}+u_{3}\hat{k}$ be a unit vector  R3 and $\hat{w}=\frac{1}{\sqrt{6}}({}\hat{i}+\hat{j}+2\hat{k})$. Given that there exists vector  $\overrightarrow{v}$  in  $R^{3}$ , such  that  $|\hat{u}+\vec{v}|=1$ and  $\hat{w}.(\hat{u}+\vec{v})=1$   which of the following statement(s) is/are correct?


A) There is exactly one choice for such $\overrightarrow{v}$

B) There are infinitely many choices for such $\overrightarrow{v}$

C) If $\hat{u}$ lies in the XY-plane, then $|u_{1}|=|u_{2}|$

D) If $\hat{u}$ lies in the XY-plane, 2 $|u_{1}|=|u_{3}|$



27.

Let f:R→ (0,∞) and g: R→ R be twice differentiable functions such that f ’’ and g’’ are continuous functions on R

 Suppose  $f'(2)=g(2)=0, f''(2)\neq 0$ and $g'(2)\neq 0$, If  $\lim_{x \rightarrow 2}\frac{f(x)g(x)}{f'(x)g'(x)}=1$,  then

 


A) f has a local minimum at x=2

B) f has a local maximum at x=2

C) f ' '(2) > f (2)

D) f (x)- f ' ' (x) =0, for atleast $x \epsilon R$



28.

Let f(x)$=\lim_{n \rightarrow \infty}\left[\frac{n^{n}(x+n)(x+\frac{n}{2})....(x+\frac{n}{n})}{n!(x^{2}+n^{2})(x^{2}+\frac{n^{2}}{4}).....(x^{2}+\frac{n^{2}}{n^{2}})}\right]^{\frac{x}{n}}$

for all x=0, then


A) $f(\frac{1}{2)}\geq f(1)$

B) $f(\frac{1}{3})\leq f(\frac{2}{3})$

C) $f '(2)\leq 0$

D) $\frac{f'(3)}{f(3)}\geq \frac{f'(2)}{f(2)}$



29.

Let $a,b\epsilon R$ and f:R→ R  be defined by  $f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$. Then f is 


A) differentiable at x=0, if a=0 and b=1

B) differentiable at x=1, if a=1 and b=0

C) not differentiable at x=0, if a=1 and b=0

D) not differentiable at x=1, if a=1 and b=1



30.

Let P be the image of the point (3,1,7) with respect to the plane  x-y+z=3 Then, the equation of the plane passing through P and containing the straight line  $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is


A) x+y-3z=0

B) 3x+z=0

C) x-4y+7z=0

D) 2x-y=0



<<34567>>